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Abstract
We report quantitatively accurate structure-factor and radial-distribution-
function measurements of liquid water in a diamond-anvil cell (DAC) using
x-ray diffraction. During the analysis of our diffraction data, we found it
possible (and necessary) to also determine the density. Thus, we believe we
present the first-ever diffraction-based determination of a liquid structure factor
and equation of state in a DAC experiment.

1. Introduction

The experimental study of the structure of liquids at high pressures and temperatures has
been a long-standing goal of high-pressure research. With the maturation of third-generation
synchrotron sources this goal is now attainable. We report measurements of the structure factor,
radial-distribution function, and density of liquid water at room temperature up to 1.1 GPa by
angle-dispersive x-ray diffraction.

A major difficulty with liquid diffraction at high pressure is the large background signal
generated by the pressure vessel. In large-volume cells this can be overcome using energy-
dispersive diffraction and careful spatial filtering of the scattered radiation [1], or using angle-
dispersive diffraction and precise Soller slits [2]. Unfortunately, low-Z compressible liquids
and gases are much easier to study in diamond-anvil cells (DACs) and neither approach is
possible with the much smaller sample volumes required for DAC studies. Quantitative
structural information on liquids has never before been obtained in DAC experiments. In
addition to our results on water, we report briefly on the analytical procedure that has enabled
us to extract such information from both atomic and molecular liquids. A more detailed
derivation will be published separately [3].

2. Experimental details

Using standard procedures, we loaded high-purity water into specially-modified membrane-
diamond-anvil cells (MDACs) [4] with large-angle access 2θmax = 36◦ as shown in figure 1.
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Figure 1. Diagram of the MDAC.

The diamond-anvil seats were made of boron to give high x-ray transmission over the full
aperture of the MDAC.

We performed angle-dispersive x-ray diffraction on the ID09 and ID30 beam lines at the
European Synchrotron Radiation Facility (ESRF) using a doubly focused monochromatic beam
with wavelength λ = 0.3738 Å. The beam was focused to a diameter of between 20 and 80 µm,
depending on the sample size, to avoid contamination of the spectra by diffraction from the
gasket. We used a MAR345 on-line scanning image-plate detector [5]. The sample–detector
distance and the detector tilt angles were measured using diffraction from a silicon-powder
standard. The x-ray beam was 99% horizontally polarized and all geometric and polarization
corrections were made during angular integration.

Typical exposure times of 5 min were needed to achieve high exposure of the image plates
while avoiding saturation. To obtain empty-cell backgrounds we generally had to disassemble
the MDAC and reposition the cell as accurately as possible. To eliminate any Bragg diffraction
from the diamonds we masked the Bragg peaks before performing the angular integrations,
being sure to use the same mask for all the spectra in an experiment.

3. Analysis

Since the diffuse scattering in a DAC experiment is dominated by background scattering (by
one or two orders of magnitude), our analysis is necessarily different than for most liquid-
diffraction experiments where background scattering is minimized. Thus, we will briefly
derive several general equations applicable to monatomic, and molecular, liquids so that our
results can be clearly interpreted.

For a monatomic liquid the structure factor is defined as

S(Q) ≡ I coh(Q)

N f 2(Q)
= 1 + ρ0

∫ ∞

0
[g(r) − 1]

sin Qr

Qr
4πr2 dr, (1)

where f (Q) is the atomic form factor, ρ0 is the atomic density, and g(r) is the radial-distribution
function. Equation (1) can be Fourier transformed to find g(r)

F(r) = 4πrρ0[g(r) − 1] = 2

π

∫ Qmax

0
Qi(Q) sin(Qr) dQ, (2)

where i(Q) = S(Q) − 1.
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For molecular liquids, (1) cannot be straightforwardly transformed due to the difficulty of
determining an accurate molecular form factor. In our treatment we define several common [6]
effective molecular parameters: the effective electronic form factor

fe(Q) =
∑

f p(Q)

Ztot
,

where Ztot is the total molecular atomic number; the effective atomic number

K p =
〈

f p(Q)

fe(Q)

〉
Q

,

where the angle brackets denote an average over the measured range of Q; and an effective
molecular density function,

ρmol(r) =
∑∑ K p Kq

Z 2
tot

ρp,q(r), (3)

where ρp,q(r) is the density of atom centres of type q at a distance r from an atom of type
p, with p and q denoting all the atoms in the molecule. We use the analytic tabulation of
Hajdu [7] to evaluate the atomic form factors, f p(Q). With these definitions (1) becomes

Smol(Q) ≡ I coh(Q)

N Z 2
tot f 2

e (Q)
= S∞ + ρ0

∫ ∞

0
[gmol(r) − 1]

sin Qr

Qr
4πr2 dr, (4)

where

S∞ ≡
∑

K 2
p

Z 2
tot

. (5)

N is now the number of molecules, and ρ0 is the molecular density. We can Fourier transform
(4) to find

F(r) = 4πrρ0[gmol(r) − 1] = 2

π

∫ Qmax

0
Qi(Q) sin(Qr) dQ, (6)

where i(Q) = Smol(Q)− S∞. Using (3) we identify our effective molecular radial distribution
function as a linear combination of partial radial distribution functions

gmol(r) =
∑∑ K p Kq

Z 2
tot

gp,q(r), (7)

to facilitate comparison with other experiments and simulations.

4. Data treatment

The experimental determination of I coh(Q) appearing in (4) is given by

I coh(Q) = N
[
α I samp(Q) −

∑
I incoh

p (Q)
]
, (8)

where I incoh
p (Q) is the incoherent (Compton) scattering from atoms of type p in the sample

computed using the analytic atomic formulae of Hajdu [7], α is a normalization factor to put
the signal into atomic units, and

I samp(Q) = I meas(Q) − s I bkgd (Q)

T (Q)
. (9)

I meas(Q) and I bkgd (Q) are obtained by φ-integration of the image-plate signal including a
polarization correction, and T (Q) is the MDAC transmission factor. T (Q) was always greater
than 90% in these experiments and was calculated based on the known MDAC geometry and
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absorption of diamond and boron (including impurities). Reasonable errors in the magnitude
and shape of T (Q) had no affect on our results.

The proper determination of the reference background spectra I bkgd (Q) is the most
difficult aspect of making and analysing these measurements. We attempted to minimize
the background signal by using thick samples (up to 100 µm) and thin diamond anvils (down
to 500 µm), but diffuse scattering from the diamonds was still dominant by more than an order
of magnitude. Great care must be exercised in collecting the reference spectra with the gasket-
hole shape, size, and position identical to that used for the liquid spectra. This is because the
metallic gasket serves as an aperture for the diffuse scattering from the first diamond and the
shape of I bkgd (Q) is intimately related to this aperture effect. Scattering from the diamond
anvils takes the form of the following:

(i) Bragg scattering, which is easily removed by digitally masking the image integration;
(ii) Compton scattering, which is assumed to be independent of pressure and temperature;

and
(iii) temperature-diffuse scattering (TDS), which is far more insidious due to its temperature

dependence and anisotropy, necessitating a separate reference spectra for each sample
temperature.

To simplify the collection of appropriate background spectra, we developed a procedure for
utilizing solid-sample reference spectra. The most difficult aspect of using solid-sample
references involves properly treating the sample TDS [3].

5. Optimization procedure

We determine the normalization factor α in (8) using the Krogh-Moe [8] and Norman [9]
method

α = −2π2ρ0 +
∫ Qmax

0 [J (Q) + S∞]Q2 dQ∫ Qmax

0 L(Q)Q2 dQ
, (10)

where

J (Q) ≡
∑

I incoh
p (Q)

Z 2
tot f 2

e (Q)
, and L(Q) ≡ I samp(Q)

Z 2
tot f 2

e (Q)
.

This equation is exact for infinite Qmax , but the limited experimental range of Q and the lack
of knowledge of ρ0 makes the determination of α uncertain. Due to the domination of the
diffuse diamond background over scattering from the sample, we need to determine the scale
factor s in (9) with high precision as well. Accurate direct measurement of the beam intensity
is not currently possible on the beam lines we used, so an alternative method for finding s was
needed.

We now present a self-consistent, corrective procedure that addresses the problems
associated with uncertainties in α, s, and the form factor fe(r) (which does not take into account
electronic bonding and charge-transfer effects) and even allows us to experimentally determine
ρ0. Following the general outline of a method for minimizing errors in the determination of
g(r) pioneered by Kaplow et al [10], we force the behaviour of F(r) at small r < rmin (below
the first intermolecular peak) to match the expected behaviour for a given sample including
peaks due to intramolecular interference in the frozen-atom approximation [3]. This involves
an iterative procedure where the difference between the expected small-r behaviour and the
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Figure 2. Contour plot of χ2
(2). Note that χ2

(2) has been normalized to 1 at the minimum.

actual F(r) is inverse Fourier transformed to find an improved value of the structure factor
according to the following equations:

(i) F(i)(r) = 2

π

∫ Qmax

0
Qi(i)(Q) sin(Qr) dQ,

(ii) �F(i)(r) = F(i)(r) − [Fintra(r) − 4πrρ0],

(iii) i(i+1)(Q) = i(i)(Q) − 1

Q

[
i(i)(Q)

S∞ + J0(Q)
+ 1

] ∫ rmin

0
�F(i)(r) sin(Qr) dr,

(11)

where Fintra(r) is the frozen-atom contribution to F(r). This procedure converges very rapidly
and generally two iterations were sufficient for convergence [3].

As Kaplow originally noted [10], ρ0 is an independent variable in this analysis with a direct
influence on α and on �F(i)(r), so that ρ0 can be found by minimizing χ2

(i) ≡ ∫ rmin

0 �F2
(i)(r).

The optimum value for s can be found similarly. From this discussion it is not at all apparent
that χ2

(i) is sufficiently well behaved to allow the determination of either ρ0 or s, not to mention
both of them. However, it turns out that there is a unique, well defined minimum in χ2

(i) and
that the variables ρ0 and s are surprisingly independent. This can be seen in figure 2 which
shows a contour plot of χ2

(2) in ρ0, s space. The independence of ρ0 and s is demonstrated by
the nearly circular symmetry near the minimum of χ2

(2). In fact, we are able to determine the
minimum with a high degree of precision.

6. Results

Figure 3 shows the optimum density ρ0 and scale factor s for nearly ambient pressure water as
a function of Qmax . While the overall trends are relatively constant, coupled variations of ρ0

and s can be seen in the figure. To account for these systematic variations, our reported values
of ρ0 correspond to averages found for Qmax ranging from 60 to 95 nm−1. The reported error
is the standard deviation.

Figure 4 shows our determination of the density for liquid water at 295 K plotted
against the Saul and Wagner [11] equation of state. The open circles represent an empty-
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Figure 3. The optimized density and scale factor as a function of the Q cutoff at ambient conditions.
The average density is shown by the solid curve, and the density of ambient water by the dashed
curve.

Figure 4. Our experimental determination of the density of liquid water at 295 K plotted against
the Saul and Wagner [11] equation-of-state density. The deviation scale shows that our density
determination for liquid water has an accuracy of about ±3%.

cell reference, while the solid circles represent a solid-sample reference. The good agreement
strongly supports the validity of our solid-sample reference method. The excellent agreement
between our measurements and the equation of state suggest that our analysis rests on a sound
foundation, and that it is possible to measure the density of low-Z liquids by x-ray diffraction
to ∼3% accuracy in DACs. This is the first time that density measurements of liquids have
been reported by x-ray diffraction at high pressure, and it opens exciting new possibilities for
directly measuring the equation of state of liquids.
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Figure 5. Results of our experiments for ambient pressure (see footnote 3) water and comparison,
using (7), to recent experiments by Hura et al [12] and Soper et al [13] and to first-principles
simulations by Schwegler et al [14].

Our structure factors Smol(Q) are consistent as a function of Qmax while the radial-
distribution functions gmol(r) show various amounts of broadening and unphysical oscillations.
We believe that our determinations of Smol(Q) are accurate while gmol(r) shows Qmax cutoff
problems.

To illustrate the accuracy of our method we present a comparison of our results for nearly-
ambient-pressure water3 with recent x-ray [12] and neutron [13] diffraction experiments, as
well as a first principles simulation [14] in figure 5. In order to compare our results with
previous results, in figure 5(a) we have combined the reported site–site distribution functions
according to (7). We used Qmax = 80 nm−1 so that the coefficients are KO = 8.96, KH = 0.52,
and S∞ = 0.808. The first peak in our gmol(r) at r = 0.095 nm is the intramolecular-OH
peak imposed by our analysis and was not actually measured by us, or in any other diffraction
experiment. Since the broadening of this peak in our analysis is entirely due to the Qmax

cutoff, its width gives a good representation of our experimental resolution. The second peak
at r = 0.18 nm is the intermolecular-OH peak measured in the neutron experiments and
the simulations, but not in either x-ray experiment. The dominant peak in our gmol(r) at

3 The sample was confined in the DAC with no applied force and a measured pressure of 0 ±0.05 GPa. However, it
is highly likely that some small pressure remained.
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Figure 6. The pressure dependence of our results at room temperature. The arrows denote the
changes in the extremae at 0 and 1.1 GPa.

r = 0.28 nm is too broad, too weak, and at too high r compared to the other results. However,
we believe that these inconsistencies can be explained by our finite Qmax since the other
experiments were analysed to explicitly eliminate the Qmax problem. The similarity in width
of our peaks at r = 0.095 and 0.28 nm lend support to this view. All the subsequent peaks in
gmol(r) are in excellent agreement.

In figure 5(b) we compare our Smol(Q) with those from the same three datasets. To allow
a direct comparison, we have performed the inverse Fourier transforms of the gmol(r)’s shown
in figure 5(a). We find that our determination of Smol(Q) is in excellent agreement with the
other experimental structure factors. All of the peak positions are in good agreement and the
peak intensities are very nearly so. The small discrepancy in the relative and total intensities
of the primary doublet is entirely consistent with a small (<0.05 GPa) applied pressure (see
footnote 3).

Figure 6 shows the pressure dependence of Smol(Q) and F(r) for room temperature water
from 0 GPa up to the metastable liquid at 1.1 GPa. The arrows show the sense of the changes
in the peak positions with increasing pressure. We see a change from a doublet first peak
in Smol(Q) to a singlet, and an associated reduction in the peak amplitudes of the subsequent
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Figure 7. The coordination number as a function of pressure at ambient temperature water. The x-
ray [12], neutron [13], and simulation results [14] are shown as the squares, triangles, and diamonds,
respectively.

peaks as pressure is increased. As has been observed previously [15], these changes correspond
to the collapse of the second-neighbour shell near 0.45 nm nearly into the first shell. We see
an associated dramatic downward shift in the peak positions and increase in magnitude of the
subsequent peaks in F(r).

Finally, figure 7 shows the coordination number n where

n ≡ ρ0

∫ r0

0
gmol(r)4πr2 dr

and r0 is the position of the first minimum in 4πr2gmol(r). We find a rapid increase with
pressure in n from about 5 to about 8 or 9 at freezing. This increase in coordination is due to
a combination of two factors, the increase in the amplitude of the first peak and the increase
in the position of the first minimum during and after the collapse of the second shell.

7. Conclusion

We have performed the first quantitative measurements of a liquid structure factor in a DAC–
water system up to 1.1 GPa. A fortuitous by-product of our analysis is that the bulk density of
the liquid can be measured, thereby eliminating a free parameter in all previous high-pressure
studies. The density we present is accurate to within about 3% in liquid water. We have
performed extensive tests of our analytical method and believe that our structure factors are
highly accurate. At this time, we have not developed radial distribution functions with similar
levels of accuracy due to the Qmax problem, but we are confident that this can be overcome [14].
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